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Euclid photo-z requirements
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Photo-z additional requirements @
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For each object in the WL sample, provide the PDF of the redshift

Perform star/galaxy(/QSQO) separation

Provide (observed) SEDs of the stars (for PSF determination). What
about galaxies?

Plus a whole lot of legacy science requirements
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Photo-z requirement based on PDF

In each subset (bin) used for the weak-lensing analysis, the average of the
true_z-subtracted PDF(z) (PDF(z-true z)) shall meet the following
cumulative probability requirements:

Within ABS(z-true z)/(1+z) Fraction of probability
005 68%
015 90%



Photo-z requirement based on PDF

=/ = 0.05"(1+2) . 68 %
2 —~ = 0.15%(1+z) ] : 90 %
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Optical ground-based data
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Calibration fields %

= Not the Euclid Deep Fields!

» 4 ~] deg? equatorial fields: COSMOS, SXDS, VVDS 2h, E-
CDES + 2 (GOODS-N, EGS) not so equatorial

= 25x wide exposure with Euclid, but also from optical surveys
(?)
= Used to study the color distribution of galaxies

= And to build the color-redshift calibration relation (Dan's talk)

= Secondary calibration using astrometric redshifts (Vivien's

talk)



Variable filters €

= Filter transmission 1s location dependent

= In the best case this introduces a scatter /
= But probably a bias, if the filter shifts in

wavelength

= Galactic absorption (Audrey's talk) 1s another
source of fluctuation 1n the transmission

= And actually, don't forget the atmosphere...
but we may be unable to do anything about
that...



Photometry, the X-ray way
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= In X-ray astronomy, each observation comes with its own response. The
source spectral properties are then obtained by forward fitting an
emission model through the response to the count rates

= This can be “easily” treated with template-fitting algorithms

= Can we fix the colors for ML? (Jean's talk)
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Photometric-redshift algorithms

Color(+...) space Redshift space

z=f(colors)
Mapping f can be constructed based on prior knowledge :
» Template-fitting: Hyper-Z, Le Phare, BpZ, Phosphoros,...
Or it can be discovered:

= Machine-learning: Nearest neighbors, Perceptron, Support vector
regression, Random Forest, Adaboost, Gaussian Processes, ...

Both have advantages and disadvantages; we probably want to use both



Combining TF and ML (with ML)

euc: d

Template fits, auto; est.: mean OB fits, auto; est.: mode Combination; est.: median
scatter=0.06; outliers=0.038 scatter=0.055; outliers=0.072 scatter=0.027; outliers=0.041
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Classifier-based combination (Random Forest)

Stiveges et al. in prep.
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e

Template fit Overlapping bins method Combination
0 ||
s © - © _
s o]
=] | | — - —
S 2 [TH 2 [
N o N o
m | | ] -
(= . [Te] w
S == S
- (=] - o
2 ﬁ P B = ﬂ: = ’:f
S =5 S
e 005 045 085 125 165 205 245 285 3.25 e 005 045 085 125 165 205 245 285 325 e 005 045 085 125 165 205 245 285 3.25

Le Phare TPZ Combination

Stiveges et al. in prep.



Feature importance N |
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Conclusions =
S0

cL'd

= Euclid will use inhomogeneous optical survey

= Qutlier fraction and scatter requirements not so hard, if one has good
photometry

= But very stringent requirements on the bias
= Ready to cope with variable transmissions ??

= We are probably using more than one photo-z algorithm



Template-Fitting Advantages

Coald
v Based on astrophysical knowledge; the better the

knowledge, the better the algorithm

v Any physical process that 1s understood can be modeled
explicitly (e.g., Galactic absorption)

v Constructs naturally a likelihood, and can be turned into a
fully Bayesian approach

v Can cope with informative priors in a very natural way, e.g.
luminosity function, cosmological volume



Template-Fitting Disadvantages

ucL‘d

x Knowledge of the sky 1s imperfect (wrong templates) and
incomplete (lack of templates)

x No clear guidelines on the number of templates (not a
continuous quantity)

x Computationally intensive

x Cannot easily cope with additional features (galaxy shape,
etc. ; but 1s 1t usetul ?)

x Link between photometry and galaxy properties not so clear
(e.g., aperture effects)



Machine-Learning Advantages

Eoad

v No need to understand the astrophysics or to model any
physical process

v Can easily incorporate additional features, e.g., different
types of photometry; good ML algorithms can do it without
loss of stability

v A sound ML algorithm will be optimal where training set 1s
CCgOOd”

v Not linked to galaxy properties, so photometry does not
really matter



Machine-Learning Limitations

Clocid

x Many algorithms cannot produce naturally a PDF
x There are “hidden priors” in the selection of the training set
x The training set must be “good” whatever that means

x There might be over- or under-fitting 1f the model complexity 1s
not chosen properly

x Extrapolations might/will occur if the training set 1s incomplete



But 1s ML better ?

= Results depend strongly on the quality of the training set

= Training set and test set generally come from the same population

= Meaningful comparison must at least use a weighting scheme (e.g.,
Lima et al. 2008)

= Any missing population will probably be better characterized with
template-fitting

= Template-fitting involves some “black magic”, so the result depends a
lot on fine tuning
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