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EPHOR: Extended photometric redshift
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Motivation

* Many photo-z programs output
a posterior probability distribution P(z).

* Problem: how to choose a single valuethe topic
for the redshift z from P(z)?

/ zguess =77
P(z)
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Choose a single value z. from P(z)

 We want a point estimate z. from P(z).

 Which is the best option? . cgian

— mean? mode  mean
— mode?
P(2)
— median? /\
Zlo jll 22 2:3 Zri-1 z{:

e None of them is the best.



Choose a single value z. from P(z)

e The best choice is the mean

within the heaviest peak!
— To compute it precisely,

we would need a clustering algorithm.
* Too complicated.

* An approximate algorithm easy to perform?

Mean within the heaviest peak

e,
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From sighal detection

* |n signal detection, to detect a pealk,
they convolve a signal with a filter F(z).

— Mean of the heaviest peak = argmax F*P(z)
* What filter to use?
P(2)

Filter F(z) <
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F*P(z) = [ dy F(z-y) P(y) The second peak wins

after the convolution.

222, 2

argmax K*P(z)



Loss and Risk
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 Let us define a certain “loss

arising from our guessing a redshift at z, .

while the true redshift is z.

— “loss” L(z Z)

guess’

* Let us define the “risk” of a guess z, .,

as the average loss expected if we adopt the guess.
— “risk” R(z [dz L(z z) P(z)

guess) - guess’



Loss as a filter

Risk: R(z [dz L(zg,ess 2) P(2)

(\Z\ompare!

Filter convolution: F*P(z) = f dy F(z - y) P(y)

guess) =

The loss L(z,, 2) plays a role

similar to the detection filter F(z - y).
— A difference is that L(z,, ., z) is minimal at z
while F(z - y) is maximal there.

guess =<,

Best choice of z is the mean of the heaviest peak

= argmax F*P(z) = argmin R(z,q;)-



Loss?

* The best guess z. proved to be
the minimume-risk point:

Z« = argmin R(z

R(z

guess)'

[dz L(z z) P(z).

guess) = guess’
* We have yet to define L(z,,,, 2).
— How should we estimate the loss
of the discrepancy between
the guessed redshift and the true z?



(1) Square difference as the loss

* |f we were to choose square diff. as the loss:

— L(z Z)=(z, . - 2)?

guess’ guess

* Then z. = argmin R(z ) = 2.
— Best if P(z) has only a single peak.

— Worst otherwise

* Too heavy penalty for outliers |z —z| >1.

guess
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(2) Upside-down top-hat as the loss

* |f we were to choose an upside-down top-hat function

U(Zg,ess 2) as the loss:
“U(Zgyessr 2) = 1if | 2,055 - 2| is very large, otherwise 0”
* Then the risk R(z,,ess) = J dZ U(z,,s6, 2) P(2)

would be the probability of z

guess

E.g., if we use the definition below,

U(z

guess’

w = 0.15

A

A

(otherwise)

being an outlier.

z) agrees with the outlier criteria commonly used.

1 (|zguess — 2| >= w(1 + 2))
U(Zguessaz) - {0 ® )

U(z

guess; Z)

+0.15(1+2)
—>

»

=7

zguess -

guessed z



(1+2) Upside-down bell as the loss

— thatis = U(z
— thatis ~ (z

guess’

guess

z) outside, and
- )% inside.

2

After all, we use an upside-down bell shape

L(z z)=L(Az)=1-1/(1s

guess’
AZ = (zguess - Z)/(l + Z)I
w=0.15

< The risk R(z
— Risk of being outli

guess

— Expected dispersilc

0
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Z« (minimum-risk z) < z_ ...

Minimume-risk redshift estimate

Zx Z median
Outlier fraction: 0.108(2) (-3%) 0.111(2)
Bias [mean(Az)]": 0.0090(9)(-40%) 0.016(1)
Dispersion [RMS(Az)] *1: 0.171(8) (-10%) 0.190(9)
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True redshift

True redshift

(*1): Az = (zguess - Ztrue) / (1 + Ztrue)



Risk as a selection criterium

* |tis natural to use the risk R(z«) in the
selection of good samples:

— “Select the sample if R < threshold.”

* The risk R(z.) can take the place of

“confidence” used commonly:
confidence(2zgyess) = /dzH(zgueSS,z)P(z),

1 (|zguess — 2| <0.03(1 + 2))
0 (otherwise)

H(Zguess: Z) — {
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Risk <& Confidence

* Compare samples | - seeasycon

-~ selectby risk (Looser criteria)

— Selected by the confidence, and o
(confidence > threshold) s|

— Selected by the risk o
(Risk < threshold)

tlier fraction (%
[e)]

4l

* Selection by risk getSy
— More adopted samples; wi
— Less outliers. \

.....

Less outliers

0 20 40 60 80 100
Fraction of adopted samples (%)



Summary

* | propose a minimum-risk choice

for the point estimate of redshift.

— Included in the catalogs of HSC public/internal
releases as “photoz best”

* | propose that the risk be used

as a substitute for “confidence”.

— Riskis included in the catalogs as
“photoz_risk best”
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(BACKUP)
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Extended Photometric Redshift
— A neural network to perform photo-z

EPHOR
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EPHOR: Extended photometric redshift
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E bulge flux g «+@

I : o

1 . o

|nput ibulgefluxy .__;

| diskfluxg 79

8

2 components for each band are input.; diskfluxy *1®

———————————————————

— Bulge flux & disk flux
5 bands for each object.

— 810 ir Z,Y
10 inputs in total.

Apparent object size is useful, but is not used

— For fear of systematic correlation with shear
measurement.
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6 — 8 hidden layers
(fully connected)

Hidden layers

* Hidden layers are fully connected.

— All neurons in a layer are connected to
all neurons in the next layer.

* Activation fu nct;omsﬁoftplus
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Output layer
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Output layer

e Output layer is softmax:

y; = exp(x;) / Z;exp(x;)
— to normalize the sum 2y, = 1.
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e Use the cross entropy as the
objective function in training:

— so that y; will truly be the probability:
Yi= P(zE€ [Z,'_1;Zi))-

25

P(z = [2,.1,2,)

!



