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EPHOR: Extended photometric redshift 
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Motivation 

• Many photo-z programs output 

 a posterior probability distribution P(z).  

 

• Problem: how to choose a single valuethe topic 

 for the redshift z from P(z)? zguess = ?? 
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Choose a single value z* from P(z) 

• We want a point estimate z* from P(z). 

 

• Which is the best option? 

– mean? 

– mode? 

– median? 

 

• None of them is the best. 

mean 

median 

mode 
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Choose a single value z* from P(z) 

• The best choice is the mean  

 within the heaviest peak! 
– To compute it precisely, 

 we would need a clustering algorithm. 
• Too complicated. 

• An approximate algorithm easy to perform? 
Mean within the heaviest peak 

S1 S2 

S1 < S2 
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From signal detection 

• In signal detection, to detect a peak, 

 they convolve a signal with a filter F(z). 

– Mean of the heaviest peak ≈ argmax F*P(z) 

• What filter to use? 

 

Filter F(z) 
The second peak wins 
after the convolution. 

argmax K*P(z) 
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F*P(z) = ∫ dy F(z - y) P(y) 



Loss and Risk 

• Let us define a certain “loss” 

arising from our guessing a redshift at zguess  

while the true redshift is z. 

– “loss” L(zguess, z) 

 

• Let us define the “risk” of a guess zguess  

as the average loss expected if we adopt the guess. 

– “risk” R(zguess) = ∫ dz L(zguess, z) P(z) 
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Loss as a filter 

• Risk:  R(zguess) = ∫ dz L(zguess, z) P(z) 
 
• Filter convolution: F*P(z) = ∫ dy F(z - y) P(y) 

 
• The loss L(zguess, z) plays a role 
 similar to the detection filter F(z - y). 

– A difference is that L(zguess, z) is minimal at zguess = z, 
 while F(z - y) is maximal there. 

 

• Best choice of z is the mean of the heaviest peak 
  ≈ argmax F*P(z) ≈ argmin R(zguess).  
 

 

Compare! 
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Loss? 

• The best guess z* proved to be 

 the minimum-risk point: 

  z* = argmin R(zguess), 

  R(zguess) = ∫ dz L(zguess, z) P(z). 

 

• We have yet to define L(zguess, z). 
– How should we estimate the loss 

 of the discrepancy between 

 the guessed redshift and the true z? 
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(1) Square difference as the loss 

• If we were to choose square diff. as the loss: 

– L(zguess, z) = (zguess - z)2 

 

• Then z* = argmin R(zguess) = 〈z〉. 

– Best if P(z) has only a single peak. 

– Worst otherwise 

• Too heavy penalty for outliers |zguess – z| ≫1. 
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(2) Upside-down top-hat as the loss 

• If we were to choose an upside-down top-hat function 
 U(zguess, z) as the loss: 

“U(zguess, z) = 1 if |zguess - z| is very large, otherwise 0” 
 

• Then the risk R(zguess) = ∫ dz U(zguess, z) P(z) 
 would be the probability of zguess being an outlier. 
 E.g., if we use the definition below, 
 U(zguess, z) agrees with the outlier criteria commonly used. 

 

U(zguess; z) 

guessed z 

±0.15(1+z) 

zguess = z 
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(1+2) Upside-down bell as the loss 

• After all, we use an upside-down bell shape 

– that is ≃ U(zguess, z) outside, and 

– that is ～ (zguess - z)2 inside. 

 L(zguess, z) = L(Δz) = 1 – 1/(1 + (Δz)2/w2), 

 Δz = (zguess - z)/(1 + z), 

 w = 0.15 

➭The risk R(zguess) is something between 

– Risk of being outlier, and 

– Expected dispersion 

 Δz/w 

(Δz/w)2 

U(Δz) 

L(Δz) 
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z* (minimum-risk z)  zmedian 

 z* zmedian 
 

Outlier fraction: 0.108(2) (-3%) 0.111(2) 
Bias [mean(Δz)]*1: 0.0090(9) (-40%) 0.016(1) 
Dispersion [RMS(Δz)] *1: 0.171(8) (-10%) 0.190(9) 

(*1): Δz = (zguess – ztrue) / (1 + ztrue) 
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Risk as a selection criterium 

• It is natural to use the risk R(z*) in the 
selection of good samples: 

– “Select the sample if R < threshold.” 

 

• The risk R(z*) can take the place of 
“confidence” used commonly: 
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Risk  Confidence 

More adopted samples 

Less outliers 

(Looser criteria) 

(Stricter criteria) 
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Fraction of adopted samples (%) 

• Compare samples 
– Selected by the confidence, and 

(confidence > threshold) 

– Selected by the risk 
(Risk < threshold) 

 

• Selection by risk gets you 
– More adopted samples, with 

– Less outliers. 
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Summary 

• I propose a minimum-risk choice 

 for the point estimate of redshift. 

– Included in the catalogs of HSC public/internal 
releases as “photoz_best” 

• I propose that the risk be used 

 as a substitute for “confidence”. 

– Risk is included in the catalogs as 
“photoz_risk_best” 
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(BACKUP) 
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EPHOR 

Extended Photometric Redshift 

 ― A neural network to perform photo-z 
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EPHOR: Extended photometric redshift 
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Input 
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Input 

• 2 components for each band are input. 
– Bulge flux & disk flux 

• 5 bands for each object. 
– g, r, i, z, y 

• 10 inputs in total. 

 

• Apparent object size is useful, but is not used 
– For fear of systematic correlation with shear 

measurement. 
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Hidden layers 
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Hidden layers 
6 – 8 hidden layers 
(fully connected) 

• Hidden layers are fully connected. 

– All neurons in a layer are connected to 
all neurons in the next layer. 

• Activation function is softplus. 

 x0 

x1 

xn-1 

…
 

W0 

W1 

Wn-1 

y1 

x = W0x0 + W1x1 + … + Wn-1xn-1 

y = softplus(x) = log(1 + exp(x)) 

y2 

y3 
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Output layer 
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Output layer 

• Output layer is softmax: 
 yi = exp(xi) / Σj exp(xj) 

– to normalize the sum Σyi = 1. 

 

• Use the cross entropy as the 
objective function in training: 
 H = -Σ y’i log yi   (y’: supervisory value) 

– so that yi will truly be the probability: 

 yi = P(z∈[zi-1,zi)). 
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