Best point estimate based on Loss & Risk

Sogo Mineo, Masayuki Tanaka

EPHOR: Extended photometric redshift

Motivation

 Many photo-z programs output a posterior probability distribution P(z).

• Problem: <u>how to choose a single value</u>^{the topic} for the redshift *z* from P(z)? P(z) $Z_{guess} = ??$

Choose a single value z * from P(z)

• We want a point estimate z_* from P(z).

• None of them is the best.

Choose a single value z * from P(z)

- The best choice is the <u>mean</u> within the <u>heaviest peak</u>!
 - To compute it precisely,

we would need a clustering algorithm.

- Too complicated.
- An approximate algorithm easy to perform?

From signal detection

 In signal detection, to detect a peak, they convolve a signal with a <u>filter</u> F(z).
 Mean of the heaviest peak ≈ argmax F*P(z)

Loss and Risk

 Let us define a certain "<u>loss</u>" arising from our guessing a redshift at z_{guess} while the true redshift is z.

- "loss" $L(z_{guess}, z)$

 Let us define the "<u>risk</u>" of a guess z_{guess} as the average loss expected if we adopt the guess.
 – "risk" R(z_{guess}) = ∫ dz L(z_{guess}, z) P(z)

Loss as a filter

- Risk: $R(z_{guess}) = \int dz L(z_{guess}, z) P(z)$ Compare!
- Filter convolution: $F^*P(z) = \int dy \, \vec{F}(z y) P(y)$
- The loss L(z_{guess}, z) plays a role similar to the detection filter F(z - y).
 - A difference is that $L(z_{guess}, z)$ is minimal at $z_{guess} = z$, while F(z - y) is maximal there.
- Best choice of z is the mean of the heaviest peak $\approx \operatorname{argmax} F^*P(z) \approx \operatorname{argmin} R(z_{guess}).$

Loss?

 The best guess z_{*} proved to be the minimum-risk point:

$$z_* = \operatorname{argmin} R(z_{guess}),$$
$$R(z_{guess}) = \int dz L(z_{guess}, z) P(z).$$

We have yet to define L(z_{guess}, z).

 How should we estimate the loss of the discrepancy between the guessed redshift and the true z?

(1) Square difference as the loss

• If we were to choose square diff. as the loss:

$$-L(z_{guess}, z) = (z_{guess} - z)^2$$

- Then $z_* = \operatorname{argmin} R(z_{guess}) = \langle z \rangle$.
 - Best if P(z) has only a single peak.
 - Worst otherwise
 - Too heavy penalty for outliers $|z_{guess} z| \gg 1$.

(2) Upside-down top-hat as the loss

- If we were to choose an upside-down top-hat function U(z_{guess}, z) as the loss: "U(z_{guess}, z) = 1 if |z_{guess} - z| is very large, otherwise 0"
- Then the risk $R(z_{guess}) = \int dz \ U(z_{guess}, z) \ P(z)$ would be the probability of z_{guess} being an outlier. E.g., if we use the definition below, $U(z_{guess}, z)$ agrees with the outlier criteria commonly used. $U(z_{guess}, z) = \begin{cases} 1 & (|z_{guess} - z| > = w(1 + z)) \\ 0 & (otherwise) \end{cases}$, w = 0.15w = 0.15w = 0.15 $(1 + z) = z_{guess} = z$ guessed z

(1+2) Upside-down bell as the loss

- After all, we use an upside-down bell shape
- that is $\simeq U(z_{guess}, z)$ outside, and - that is ~ $(z_{guess} - z)^2$ inside. $L(z_{guess}, z) = L(\Delta z) = 1 - 1/(15 + (\Delta z)^2/w^2),$ $\Delta z = (z_{guess} - z)/(1 + z),$ w = 0.15 \Rightarrow The risk $R(z_{guess})$ is something between $(\Delta z/w)^2$ - Risk of being outlier, and $U(\Delta z)$ - Expected dispersion $L(\Delta z)$ -2 Δ $\Delta z/w$

z_* (minimum-risk z) $\Leftrightarrow z_{\text{median}}$

Risk as a selection criterium

 It is natural to use the risk R(z*) in the selection of good samples:

– "Select the sample if *R* < threshold."</p>

 The risk R(z*) can take the place of "confidence" used commonly:

$$\operatorname{confidence}(z_{\text{guess}}) = \int \mathrm{d}z \Pi(z_{\text{guess}}, z) P(z),$$
$$\Pi(z_{\text{guess}}, z) = \begin{cases} 1 & (|z_{\text{guess}} - z| \le 0.03(1+z)) \\ 0 & (\text{otherwise}) \end{cases}$$

Risk ⇔ Confidence

Summary

• I propose a minimum-risk choice

for the point estimate of redshift.

- Included in the catalogs of HSC public/internal releases as "photoz_best"
- I propose that the risk be used as a substitute for "confidence".
 - Risk is included in the catalogs as "photoz_risk_best"

(BACKUP)

Extended Photometric Redshift

A neural network to perform photo-z

EPHOR

EPHOR: Extended photometric redshift

Input

Input

- bulge flux g : bulge flux y disk flux g : disk flux y
- <u>2 components</u> for each band are input.

– Bulge flux & disk flux

• <u>5 bands</u> for each object.

— g, r, i, z, y

- <u>10 inputs in total</u>.
- <u>Apparent object size</u> is useful, but is <u>not used</u>
 - For fear of systematic correlation with shear measurement.

Hidden layers

6 – 8 hidden layers

(fully connected)

23

• Hidden layers are fully connected.

 All neurons in a layer are connected to all neurons in the next layer.

Activation function is softplus.

Output layer

• Output layer is softmax:

 $y_i = \exp(x_i) / \Sigma_j \exp(x_j)$

- to normalize the sum $\Sigma y_i = 1$.

• Use the <u>cross entropy</u> as the objective function in training:

 $H = -\Sigma y'_i \log y_i$ (y': supervisory value)

- so that y_i will truly be the probability:

 $y_i = P(z \in [z_{i-1}, z_i)).$

