Overview and recent results from **KiDS**

Hendrik Hildebrandt - AlfA Bonn and the KiDS collaboration

Argelander-Institut für Astronomie

KiDS

- 1500 sq. deg. survey
- VLT Survey Telescope (VST)
- Four bands: ugri
- Shapes down to r~24
 ~8 gal/arcmin²
- Overlap with VIKING (ZYJHKs)

Cosmic shear with KiDS-450

- 450 deg² (observations up to July 2015).
- Tomographic analysis: 4 photo-z slices
 0.1<z_{phot}<0.3, 0.3<z_{phot}<0.5,
 0.5<z_{phot}<0.7, 0.7<z_{phot}<0.9

Credit: LSST

flat ΛCDM

 Measure amount of clustered matter

•
$$S_8 = \sigma_8 (\Omega_m / 0.3)^{0.5}$$

Cosmological constraints

Kilbinger et al. (2013)

S₈ results over the years

Kilbinger (2015)

KIDS Systematic error control

- Shape measurement systematics:
 - Telescope/camera design (Cassegrain focus)
 - Thin CCDs (no brighter-fatter effect)
 - Observing conditions
- Photo-z systematics:
 - Survey design (shallow and wide)
 - NEW: VIKING overlap 5 NIR bands
- Theoretical systematics:
 - State-of-the-art analysis tools & Redundancy
 - Avoid angular ranges with large model uncertainties
- Psychological systematics:
 - Blinding

Shear calibration

- New *lens*fit code 'self-calibrates' noise bias
- Image simulations with realistic PSFs, dithers, noise, crowding, chip gaps, etc.
- Match <u>observed</u> size, ellipticity, SNR distributions in each tomographic bin
- Residual calibration factor is 1-2% ±0.2%.

Fenech Conti et al. 2016

Photo-z calibration

KiD

Data vector

- 130 points from shear-shear correlation functions ξ_+ , ξ_- .
- pick radial ranges to avoid small-scale model systematics and large-scale shear systematics
 Hildebrandt, Viola et al. (2017)

KiDS-450: Results (blind-1)

• $S_8=0.745\pm0.039$ 2.3 σ discrepancy with Planck

KiDS-450: Results (blind-2)

• $S_8=0.720\pm0.039$ 2.8 σ discrepancy with Planck

KiDS-450: Results (blind-3)

• $S_8=0.772\pm0.039$ 1.7 σ discrepancy with Planck

- S₈ constraint very similar to CFHTLenS, pre-planck CMB
- Tension with Planck $2.7\sigma_{KiDS}$ in S₈ (2.3 σ discrepancy in full parameter space)

Full results for S_8

S₈ results over the years

Kilbinger (2015; updated)

Extended cosmologies

- Massive neutrinos.
- Non-zero curvature.
- Evolving dark energy.
- Modified gravity.
- Running spectral index.

Evolving dark energy

- Resolves tension between KiDS and Planck.
- Only extensions that is moderately favoured by the data.
- $3-\sigma$ deviation from a cosmological constant.
- Resolves tension between Riess et al. (2016) and Planck.

Next steps

- Next KiDS cosmology science projects:
 - Cosmic shear fourier analysis (Köhlinger et al. 2017)
 - Peak statistics (in prep.)
 - Cross-corr. with CMB lensing (Harnois-Déraps et al. 2017)
- Technical work:
 - Understand B-modes with COSEBIs
 - Photo-z; integrate VIKING data and more spec-z

VIKING@VISTA

- Same footprint as KiDS.
- Already finished (1350deg²).

- ZYJHKs images.
- 5σ depths of 21.2 (Ks) to 23.1 (Z).

Photometric redshifts

Cosmic shear at high-z

- 5th tomographic bin with $Z_B > 0.9$.
- ~1 gal/arcmin² (15% of all KiDS galaxies).
- High signal, large volume.
- Decrease S_8 error by ~20%, i.e. 3% error on S_8 .
- $Z_B > 0.9$ galaxy ~2.5x as valuable as average galaxy!
- Need to understand redshift and shear calibration!

KIDS Summary & Outlook

- KiDS-450 measures S_8 with ~5% error (1/2 syst., 1/2 stat.).
- Tension Planck versus lensing persists ($\sim 2.3\sigma$).
- Emphasis on robustness, redundancy, blind analysis.
- All data public: <u>http://kids.strw.leidenuniv.nl/cosmicshear2016.php</u>
- Cosmic shear result tested further from many different angles.
- KiDS+VIKING ~850deg² now, 1350deg² by end 2018
 => factor >2 improvement in error to robustly test ΛCDM..
- Requires excellent calibration data (ESO LP, Keck, VISTA).
- Lots of other KiDS science (GGL, cross-corr., multi-probe, photo-z, etc.).