WFIRST Overview

WFIRST Cosmology Team Photo-z Lead D. Masters, S. Hemmati, A. Faisst, N. Stickley, D. Stern, J. Cohen , J. Rhodes, O. Dore, C. Hirata and many more

Summary

- ♦ WFIRST is moving along quickly
- * Everything I show you here is subject to change
- ♦ Will be finalized around 2020

The Mission

- Wide Field Infrared Survey Telescope (WFIRST)
- ♦ Top Priority of US 2010 Decadal Review
- ♦ Donated 2.5m reconnaissance telescope
- * Currently undergoing design and risk retirement
 - ♦ Budget capped at \$3.4 billion
 - ♦ Several science teams selected to participate in design
 - ♦ Undergoing independent review
- \Leftrightarrow Final construction estimated to start in ~2020
 - ♦ Some parts already designed/tested
 - ♦ New science teams selected then
- ♦ Estimated launch 2025

The Mission

- Nominal 6 year mission life
- ♦ All data public immediately
- ♦ 2 years for weak lensing and BAO cosmology
 - ♦ 2,200 sq deg imaging and spectroscopy survey
- 0.6 years for SNe cosmology
 - ♦ Deep imaging and IFC follow-up
- ♦ 1 year for planet microlensing
 - Continuous imaging of MW bulge for 72 day periods
- ♦ 1 year for planet imaging
 - ♦ Survey of planet host stars
- ♦ 1.4 years for general observer science

The Science

- Combination of several proposed missions
- Exoplanet Imaging
 - \diamond Two coronagraphs
 - ♦ Spectrograph and Imager
- Exoplanet Microlensing
 - ♦ Wide filed infrared imaging
- Cosmology
 - ♦ Wilde filed imaging and spectroscopy
 - ♦ Integral Field Channel (Unit) for SNe
- ♦ General observatory for surveys

- Coronagraph
- Currently two units with different technology
- ♦ ~2.5" FOV
- 10⁻⁹ contrast ratio
- 0.4-1µm R~70 IFU spectroscopy
- ♦ 5 imaging filters, g,r,i,z,y
- Possible star shade addition
- Primarily for imaging planets
 - ♦ Can be used for extragalactic targets

- ♦ Integral Field Channel (IFC)
- ♦ Two redundant spectrographs
- ♦ 3x3" FOV
- 0.4-2 μ m R~100
- Primarily for SNe follow-up
- ♦ Also for Photo-z calibration
 - ♦ Used in parallel to main imaging survey

Simulated I=24.3 galaxy spectra taken in parallel

- ♦ Wide Field Channel (WFC)
- ♦ 0.28 degree FOV
- 0.6-2.5 μ m sensitive detectors
- ♦ Up to 10 filter slots
- R~500 Grism Spectroscopy for BAO
- ♦ Primary goals are:
 - \diamond Weak lensing cosmology
 - ♦ BAO with Ha and OIII spectroscopy
 - ♦ Exoplanet statistics with microlensing

	New Filter Name	Wavelength (µm)*	elength (µm)* Current/Other Names Used	
Baselined WFIRST Filters	R062	0.48 - 0.76	V filter, R filter, Blue Filter, Orange Filter	
	Z087	0.76 - 0.98	Z band, Z087	
	Y106	0.93 - 1.19	Y band, Y106	
	J129	1.13 - 1.45	J band, J129	
	H158	1.38 - 1.77	H band, H158	
	F184	1.68 - 2.00	F184	
	W146	0.93 - 2.00**	W149	
	G150***	~1.0 - 2.0	Grism	
	Dark		Dark	

S
0
Ŧ
Q
\cap
~
er (
her (
ther (

New Filter Name	Wavelength (µm)*	Current/Other Names Used
K208	1.95 - 2.20	Red filter, K band, K short
G165***	1.35 - 1.95	Red Grism
G113***	0.90 - 1.35	Blue Grism

- ♦ Baseline two surveys with three components
- ♦ Primary goal is systematics control
- ♦ High Latitude Survey (HLS)
 - \diamond ~2,200 square degrees
 - ♦ Imaging in 4 bands for weak lensing
 - ♦ Y106, J129, H158, F184
 - ♦ Spectroscopy for BAO
 - ♦ IFC on ~50,000 random galaxies in parallel
- ♦ Deep survey for SNe and calibration
 - \diamond 5, 9, 27 deg² deep, medium, shallow
 - IFC Spectroscopic follow-up of identified SNe
 F184W in parallel

- Space has different constraints from ground
- Sensitivity is determined by zodiacal background
- Observability is determined by ecliptic latitude
- Need to observe as close to ecliptic poles as possible
 - ♦ Especially deep/calibration fields
- Can't do a wide are survey on the celestial equator

- Survey nominally designed to overlap with LSST
- Ground based u,g,r,i,z
 photometry needed for
 photo-z
- ♦ SNe deep field TBD
 - Nominally in southern
 LSST deep drilling field
 - Would like to allow for HSC/PFS follow-up
 - ♦ Hard to meet all constraints

- Grism spectroscopy to 5 x 10⁻¹⁷ erg/s/cm²
 7σ
- ♦ IFC spectral SNR~10 per resolution element at 25th magnitude

Filter	HLS	Shallow	Medium	Deep
Y106	26.7	27.1		
J128	26.9	27.5	27.6	29.3
H159	26.7		28.1	29.4
F184	26.7			29.5

WFIRST Photo-z Problem

♦ WFIRST is selecting galaxies in the NIR

- \diamond Very faint H<25
- ♦ Many red galaxies
- * This could be a very hard sample to get redshifts to
 - ♦ Bias calibration hard
- ♦ Full WFIRST lensing sample in blue, WFIRST faint sample (missed in Euclid sample) in green
 - ♦ Based on CANDELS
- \diamond Here the "Euclid sample" is defined to be RIZ<25
 - \diamond 0.5 mag deeper than nominal Euclid
 - ♦ Depth being targeted for Euclid (C3R2) spectroscopy

WFIRST Photo-z Problem

- Significant number of galaxies not in the Euclid Sample
 - \diamond 20% of WFIRST sample have RIZ>25
- These will be hard to get spectra for from the ground
- What fraction don't have colors in current spectroscopic samples?
- ♦ How hard will it be to get redshifts?

- We adopt a widely-used technique known as the Self-Organizing Map (SOM), or Kohonen Map
- Easy to visualize
- Easy to understand

Illustration of the SOM (From Carrasco Kind & Brunner 2014)

- 1. Initialized map is presented with training data, i.e. the colors of one galaxy from the overall sample.
- 2. Map moves towards training data, with the closest cells being most affected.
- 3. Process repeats many times with samples drawn from training set until the map approximates the data distribution well.

The SOM grid in color-color plots

Self Organizing Map

- ♦ SOM provides a map of the data space
- Parameterizes the data into a probability density field
- A model provides a way to map that probability density field to a physical parameter
- Could be an analytic model or a data model

Self Organizing Map

- The properties of a particular cell can be assessed with analytic models
- Color maps smoothly to redshift over most of the manifold

Masters, Capak et al. 2015

Self Organizing Map

- Photo-z distribution is very smooth over most of color space
- ♦ Spec-z are not representative of data
- Can use SOM to select optimal spectroscopic sample
 - ♦ Masters, Capak et al. 2015
- Reduces required spectroscopic telescope time by orders of magnitude

Redshifts from an analytic model Redshifts from spectroscopic data

Masters, Capak et al. 2015

C3R2 Survey

Flux Distribution Of Targets

- Spectroscopic sample under way
- Aiming for a color complete spectroscopic sample
- Know what we expect in each cell allows for optimal targeting
- Using multiple instruments and exposure times
- Very low failure rate

C3R2 First Results

- ♦ ~608 new cells calibrated in DR1
 - 5.4% of color space
 - ♦ 80% of lensing sample now calibrated

DR1 Redshifts

All Redshifts

WFIRST Self Organizing Map

WFIRST full sample

C3R2-depth sample

WFIRST faint sample

- Most faint WFIRST galaxies have colors in the C3R2 sample, ~4% do not (white cells in middle panel)
- ~2% of Euclid color space is also "Hard"
- Will need to calibrate these some other way than ground based spectra
- WFIRST faint sources have similar photo-z's as brighter galaxies with same SED (right panel)

WFIRST Calibration

- ♦ 20% of WFIRST galaxies are very hard to get spectra for from the ground
 - \diamond Need 10's of hours
 - $\diamond~$ Only practical with ~50-100h exposures on something like PFS
- ♦ 96% of WFIRST galaxies have an analog at brighter fluxes
 - ♦ May not need spectra
 - ♦ Do we trust this?
 - \Leftrightarrow How do we verify this?
- ♦ WFIRST IFC Can solve faint galaxy problem
 - ♦ IFC will measure ~11k redshifts that are difficult to obtain from the ground
 - \diamond Of the 11k, ~1.3k will also be measured by the GRISM

Hard Redshifts

- Strong emission lines fall between ground based windows
- $\approx ~10\%$ of "hard" sample, specific redshift ranges
- ♦ GRISM can do these too as part of HLS

Hard Redshifts

- ♦ Weak lines at >0.8um
- ♦ Can be done with IFC
- ♦ 85% of WFIRST sample (17% of total)
- ♦ Also "Hard" with GRISM
 - ♦ Need many 10's of hour exposures

Hard Redshifts

- Continuum sources
- 15% of "hard" sample, ~4% of total
- ♦ Neither GRISM or IFC useful
- \Rightarrow JWST?
- ♦ Don't use these galaxies?

Summary

- ♦ WFIRST is happening
- ♦ Exact definition of survey after ~2020
 - ♦ Everything I showed you is preliminary
- Primary goal of cosmology is systematics control
- ♦ Three probes, SNe, BAO, Weak Lensing
 - \diamond ~2,200 sq deg HLS
 - ♦ 5-27 sq deg SNe survey
- ♦ IFC to get redshifts to hard galaxies