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Introduction: Galaxy Formation

● Galaxies are formed within the cosmic web, a network of dark matter & 
baryons

● Gas accretion along the cosmic web 
governs galaxy evolution
- “cold-mode accretion”
- observationally poorly constrained!

● Massive stars, SNe, AGNs inject 
energy into ISM/CGM
- “feedback”

Dark Matter Gas
Dekel+09

Intergalactic 
Medium=IGM

“cold streams”
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Inter/Circum-galactic medium
(IGM/CGM) & Lyα emission 

● Gas circulation between IGM/CGM 
is very important for galaxy evolution

● can be traced with Lyα emission 
at high redshift (z>2)

– Turned out to be ubiquitous, but 
very faint (SB<10-18 
erg/s/cm2/arcsec2)

– IFU or deep NB imaging are 
powerful tools

↑Stacked UV(left) and Lyα(right) 
image of LBG @ z=2.65 
←Their SB profiles (Steidel+11)

UV Lyα

To
 th

e 
co

sm
ic

 w
eb

 (I
G
M

) →

Tumlinson et al., 2017

so-called
Lyα halo!
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Cappellari+11

Spiral

S0(fast rotator)
Elliptical
(slow rotator)

Galaxy in Different Environments

● Environmental segregation at z=0 suggests 
some processes preferentially work on 
galaxies in dense environments

● Observations of protoclusters hold the key

– At z>2, the local relation reverses

– High gas accretion rate, high merger 
rate, etc. may be related to abundant 
active populations
(starburst, AGN, LAB, ...)

Alexander & Hickox 12
galaxy density → 
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Observations of Lyα halos
around SF galaxies at z>2

● Diffuse Lyα halo is ubiquitous if we go as deep as 
<1e-18 erg/s/cm2/arcsec2 – but its origin is still 
under debated!

● LAH shape and its dependence on various host 
properties should have useful information

– Host UV magnitude, Lyα luminosity, the large-scale 
environments, etc.

– Observations in the literature have not reached 
consensus. More obs. are needed to pin down the 
origins and probe the CGM

Stacked UV(left) and Lyα(right) 
image of LBG @ z=2.65 (Steidel+11)

UV Lyα

Matsuda+12:
LAEs in denser environments 
have more extended LAHs

vs.

Xue+16:
No such dependence → 

Leclercq+17
Halo scale-
length vs MUV 

Byrohl+21 Simulation
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Origin of Lyα emission in the CGM

Taken from Momose-san’s slide
See also Momose+16

● Ionizing photon 
production rate

● Lyα luminosity
● HI distribution

● DM halo mass ● DM halo mass



7

Deep HSC imaging for diffuse emission

● Target: Field around a hyperlumious QSO at z=2.84 (HS1549+1919)  

– reside in massive overdensity (proto-cluster)

● Observed with Subaru/HSC (PI: Yuichi Matsuda)

G    2.2 hr (20s ×389 shots) → 27.4 mag (5σ, 1.5” aperture~2×seeing 0.77”)

NB468 6.3 hr (300s ×113 shots) → 26.6 mag (5σ, 1.5” aperture)

● To avoid saturation of the QSO, exposures need to be short

– Large dithering (Ndith=5, Rdith=10’) + PA rotation (30°×N)

● To reduce the impact of diffuse ghosts

G band

NB468

Wavelength → 
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Mostardi+13
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Data Reduction

● Data reduced using HSC pipeline (hscPipe 4.0.5)     raw data: ~1.3TB 

– With global sky subtraction + ghost mask package +addtional 
mask by myself

● https://hsc.mtk.nao.ac.jp/pipedoc/pipedoc_4/j_tips/skysub.html#global-sky

● https://hsc.mtk.nao.ac.jp/pipedoc/pipedoc_4/j_tips/ghost.html

● For further analysis, we subtract
the sky with SExtractor with 
arbitrary sky mesh size

– For point source detection,
we used 64 pixel

– For extended source analyses,
we used 176 pixel (=30”)

https://hsc.mtk.nao.ac.jp/pipedoc/pipedoc_4/j_tips/skysub.html#global-sky
https://hsc.mtk.nao.ac.jp/pipedoc/pipedoc_4/j_tips/ghost.html
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Solutions:
● Ignore problematic CCDs
● Define and register “defect”
● Mask problematic regions

– Edit fits mask layer
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LAE/LAB Detection

Source detection & photometry with 
Source Extractor (Bertin & Arnouts 96)

● LAE selection criteria (2.815<z<2.887): 
– NB < 26.57(5σ)
– G – NB > max{0.5, 0.1+4σ(G-NB)}

(rest EWLyα >12Å)

● LAB (Lyα blob)selection criteria:
– criteria above(in isophotal mag) + 

Lyα 2σ isophotal area>16 arcsec2 in 
the smoothed Lyα image 
(gaussian with σ=3 pixel)

→ 3490 LAEs and 76 LABs found

★Narrow-band technique

NB468

Wavelength → 
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Distribution of LAEs & LABs

● Filamentary structure detected
● Overdensity at the center 

suggests Mhalo of the protocluster 
will become ~1015M◉ at z=0

● LABs are distributed along the 
structure & clearly prefer denser 
environments

     KS-test p-value:0.00173

※δgal=n/nave-1, n is the number of LAEs
within a 1.8’ aperture at a given point

 ･ LAE
□ LAB

Kikuta+19
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Diffuse Lyα emission from protocluster core

Diffuse emission down to
1e-18 erg/s/cm2/arcsec2 
(white contour)

 + LAE
□ LAB

Kikuta+19
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Physical Origin of Extended Lyα Emission

● Lyα photons are emitted from excited/ionized 
hydrogen atoms

– Photoionization (>13.6eV, 921nm)
→ Recombination

– N=2→1, 10.2eV, 1216nm

– Collision

Yoshida+16Cantalupo+14

Momose+16
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Diffuse Emission from Protocluster Core
at Cosmic Noon

● There are so many AGNs around the central 
part of the protocluster core

● Abundant cool gas & active source (provide 
ionizing radiation) can boost the Lyα emission 
from the filamentary structure 

● New direct way to test galaxy formation theory!

Umehata+19: SSA22@z=3.1 Erb+11, HS1700@z=2.3

Kikuta+19, HS1549@z=2.8
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Detection of an SMG at the tip of the “filament”
(preliminary)

● interesting diffuse LAB with filamentary shape, 
pinpointing the HLQSO – may trace the cold 
streams?

● To know the origin, we conducted Keck/KCWI 
observations 

– Achieved S/N is not high due to weather, but we 
tentatively detect a double-peaked Lyα line

● A sub-mm source detected at the tip by our 
ALMA observations
– Spec-z not obtained yet...
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Stacking Analyses

● Use cutout Lyα images of LAEs (sky mesh size=30”) with continuum sources masked

● Stack Lyα & continuum images with IRAF imcombine 

● Sky noise is estimated with “sky cutouts”; behaves well (∝ ~N-1/2)

● PSFs of NB/g-band images are measured with bright point sources

– Central part: objects with CLASS_STAR> 0.95 and 18 < g < 22

– Outer part: stars with 13 < gSDSS < 15 from SDSS DR14 catalog

– These are connected at r = 20 pixels following a method described in Infante-Sainz et al. (2019)

Lyα      Cont.

→
“average face”
of Japanese men
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Stacking Analyses

● “Non-LAE” sample is constructed to check total 
systematics (see Momose+14)

– Stack randomly selected objects with similar NB 
mag & FWHM and check if they are extended 

● Detect diffuse Lyα emission down to ~10-20 
erg/s/cm2/arcsec2 

orange: Lyα,  blue: Cont.
Solid: LAE, dashed: non-LAE

Sufficiently large sky mesh size is crucial!!

=64 pixel

LAE   non-LAE

C
o
n
t.

  
  

Ly
α



19

● Divide LAEs into 5 groups according to their 
photometric properties

● “Projected distance from the HLQSO” is used 
to test whether QSO radiation affects the 
LAHs 

● Note the correlations between quantities

※overdensity δ=n/nave-1, n is the number of LAEs

within a 1.8’ aperture at a given point

LAH Dependence on Various Properties
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Fitting exponential functions

● SB radial profiles are fit with the following functions:

– 2-component exponential: PSF*(C1×exp(-r/r1))

– 1-component exponential: PSF*(C1×exp(-r/r1)+C2×exp(-r/r2) )

– Power-law: PSF*(C1×r -α) as suggested by a model in Kakiichi & 
Dijkstra 2018

Lyα UV
MUSE#6905
@z=3.10
Leclercq+17
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Data 2-comp 1-comp PL                                              ▽: 1-sigma upper limit
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Results of Stacking: UV, LLyα, EW

● LAHs are detected for all subsamples

● Bright/low-EW LAEs tend to have larger LAHs
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Data 2-comp 1-comp EW profile         Gray: scaled Lyα SB
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Fitting exponential functions

Lyα UV

● 2-comp exp. functions are needed for Lyα SB profiles, 
while 1-comp exp. functions are enough for UV in most cases

● Bright (in Lyα/UV) / low-EW LAEs require the UV 2nd 
component
● This is the first robust detection at high-redshift 

● Power-law sometimes fails to capture the transition from 1st to 
2nd component
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Results of Fitting

● Lyα/UV 1st components correlate with MUV, LLyα, EW

– Brighter LAEs have larger cores
● Lyα 2nd component behaves stochastically

● Protocluster sample (δ>2.5) stands out

Lyα
UV
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Relation between scalelengths   
r1,UV, r1, Lyα, r2, Lyα 

● Correlation found only for r1,UV - r1,Lyα 

– r2,Lyα is difficult to predict

● Commonly used assumption of r1,UV = r1,Lya is not valid (gray line: 1:1 rel.) 

– Caution: small value for r1,UV may be just due to nondetection in 
continuum images
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Discussion:
Origin of the Large LAH in PCs

● Overlapping of galaxies or UV brightness of the PC LAEs cannot fully explain the large LAH

● We further divide the PC sample into near/far from the QSO sample

– Far sample no longer has a very large LAH

– Near sample shows an even larger LAH

● Diffuse emission around the PC core may be the cause

– Related to abundant cool gas irradiated by active members 
in the PC core

near QSO

far from QSO

Steidel+11: SSA22,
HS1700, HS1549

Umehata+19: SSA22
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Discovery of “UV Halos” and Its Implication 
to Low-Mass Galaxy Evolution

● Comparison with the TNG100 run of the IllustrisTNG 
simulation

– make median stacked SFR surface density profiles of FOF (friends-of-
friends) halos at z = 3

● The UV-brightest subsample has a similar shape as the SFR surface 
density profiles of TNG galaxies with 1 < SFR < 10 and 10 < SFR < 
100 subsamples

– Given the similarity of the profiles, the UV halo of the UV-brightest LAEs 
would be also due to satellite galaxies

– On average, they have 1.9 and 2.3 satellites, with median DM halo 
masses of 3.3×109 M⊙ and 4.4×109 M⊙ 

– the UV halo may be comprised of a few satellite galaxies, not by an 
intrinsically diffuse stellar halo, unlike local mature galaxies

– Such satellites have 0.01 < SFR < 0.1 – detectable with JWST?



30

Insights into the Origin of LAHs

● First detection of the UV 2nd component (r < 40 pkpc) offers direct 
evidence for a contribution from satellite SF

– Agree with recent simulation results (Byrohl+20, Mitchell+20, Lake+15)

– Can be tested with JWST by seeing if “Hα halos” exist or not

● To determine the origin of LAH at larger radii, deeper obs. & comparison with 
state-of-the-art simulations are needed

– Current simulations still cannot treat all relevant physics

– Fluorescent Lyα emission may contribute significantly at outer regions 
within protocluster cores at cosmic noon and/or near bright QSOs 

Byrohl+20(TNG50)Figure from Momose+16              +(d) fluorescence
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Summary

● The HS1549 protocluster corresponds to the intersection of ~100cMpc-scale 
structure. “Cold stream”-like structure is discovered near its core.

● Sensitivity close to 1e-20 erg/s/cm2/arcsec2 is necessary for safe argument (at 
z~3) of LAHs – NB stacking with Subaru/HSC is still a powerful tool in the 
era of sensitive IFUs!

● Lyα SB profiles are well fit with 2-component exponential functions with r2,Lyα~10 
pkpc

● r1,Lyα and r1,UV correlate, but r2,Lyα does not correlate with any photometric property – 
insufficient S/N?

● Very large r2,Lyα in the PC  suggest the importance of “fluorescence” as a LAH origin 
under some situations

● We found “UV halos” around bright/low-EW LAEs

– demonstrates satellite SF as important contributor
– Comprised of a few low-mass satellites?

● To determine the origin of LAH at larger radii, deeper obs. & comparison with 
state-of-the-art simulations are needed
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Take home messages for HSC research

● やりたいことを念頭に観測戦略を立てる
– ディザリング、一枚あたり露出時間、観測効率、 etc

● データ整約、解析も目的に応じて適切なものを選ぶ
– アーカイブ画像を使う場合、観測条件や解析過程がやりたいサイ

エンスと照らして適切かをチェックする
– 例 : スカイ引きのメッシュサイズが目標天体に対して十分大きいか

● 画像の質は必ず自分の目で確かめる
– カタログには人工信号が混入している可能性あり
– データが巨大な近年では機械学習で人工信号を除くなどの例も

●
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