

z~3 の淡い Lyα 放射の研究

Kikuta et al. 2019

Satoshi KIKUTA (NAOJ)

すばる望遠鏡データ解析講習会 2022/11/29

Introduction: Galaxy Formation

- Galaxies are formed within the cosmic web, a network of dark matter & baryons
- Gas accretion along the cosmic web governs galaxy evolution
 - "cold-mode accretion"
 - observationally poorly constrained!
- Massive stars, SNe, AGNs inject energy into ISM/CGM
 "feedback"

Inter/Circum-galactic medium (IGM/CGM) & Lyα emission

- Gas circulation between IGM/CGM is very important for galaxy evolution
- can be traced with Ly α emission at high redshift (z>2)
 - Turned out to be ubiquitous, but very faint (SB<10⁻¹⁸ erg/s/cm²/arcsec²)
 - IFU or deep NB imaging are powerful tools

so-called **Lyα halo**!

↑**Stacked** UV(left) and Lyα(right) image of **LBG** @ z=2.65 ←Their SB profiles (Steidel+11)

Galaxy in Different Environments

- Environmental segregation at z=0 suggests some processes preferentially work on galaxies in dense environments
- Observations of protoclusters hold the key
 - At z>2, the local relation reverses
 - High gas accretion rate, high merger rate, etc. may be related to abundant active populations (starburst, AGN, LAB, ...)

Alexander & Hickox 12

Cappellari+11

Observations of Ly α halos around SF galaxies at z>2

- Diffuse Lyα halo is ubiquitous if we go as deep as <1e-18 erg/s/cm²/arcsec² - but its origin is still under debated!
- LAH shape and its dependence on various host properties should have useful information
 - Host UV magnitude, Lyα luminosity, the large-scale environments, etc.
 - Observations in the literature have not reached consensus. More obs. are needed to pin down the origins and probe the CGM

Stacked UV(left) and Lyα(right) image of **LBG** @ z=2.65 (Steidel+11)

Origin of Ly α emission in the CGM

= Fluorescent = Recombination of HI gas in the CGM by ionizing photons from central galaxies

QSOs

 Ionizing photon production rate

Taken from Momose-san's slide

See also Momose+16

= Scattering = Resonant scattering of Lya photons from central galaxies by HI gas in the CGM

LAEs

- Lya luminosity
- HI distribution

= Cold flow = Shock heating by the cold gas from the IGM ($\sim 10^4$ K) can radiate Lya

- DM halo mass
- = Satellite galaxies = Lya emission by star formation in satellite galaxies (for stacking)
- DM halo mass

Deep HSC imaging for diffuse emission

- Target: Field around a hyperlumious QSO at z=2.84 (HS1549+1919)
 - reside in massive overdensity (proto-cluster)
- Observed with Subaru/HSC (PI: Yuichi Matsuda)

G 2.2 hr (20s ×389 shots) → 27.4 mag (5 σ , 1.5" aperture~2×seeing 0.77") NB468 6.3 hr (300s ×113 shots) → 26.6 mag (5 σ , 1.5" aperture)

- To avoid saturation of the QSO, exposures need to be short
- Large dithering (N_{dith} =5, R_{dith} =10') + PA rotation (30°×N)
 - To reduce the impact of diffuse ghosts

Data Reduction

- Data reduced using HSC pipeline (hscPipe 4.0.5) raw data: \sim 1.3TB
 - With global sky subtraction + ghost mask package +addtional mask by myself
 - https://hsc.mtk.nao.ac.jp/pipedoc/pipedoc_4/j_tips/skysub.html#global-sky
 - https://hsc.mtk.nao.ac.jp/pipedoc/pipedoc_4/j_tips/ghost.html
- For further analysis, we subtract the sky with SExtractor with arbitrary sky mesh size
 - For point source detection, we used 64 pixel
 - For extended source analyses, we used 176 pixel (=30")

Solutions:

Ignore problematic CCDs
Define and register "defect"
Mask problematic regions
Edit fits mask layer

LAE/LAB Detection

Source detection & photometry with Source Extractor (Bertin & Arnouts 96)

- LAE selection criteria (2.815<z<2.887):
 - NB < $26.57(5\sigma)$
 - G NB > max{0.5, 0.1+4 σ (G-NB)} (rest EW_{Lya} >12Å)

• LAB (Lyα blob)selection criteria:

- criteria above(in isophotal mag) + Ly α 2 σ isophotal area>16 arcsec² in the smoothed Ly α image (gaussian with σ =3 pixel)

→ 3490 LAEs and 76 LABs found

★Narrow-band technique

Distribution of LAEs & LABs

- Filamentary structure detected
- Overdensity at the center suggests M_{halo} of the protocluster will become ${\sim}10^{15}M_{\odot}$ at z=0
- LABs are distributed along the structure & clearly prefer denser environments

Diffuse Lya emission from protocluster core

Diffuse emission down to 1e-18 erg/s/cm²/arcsec² (white contour)

Physical Origin of Extended Lyα Emission

- Lyα photons are emitted from excited/ionized hydrogen atoms
 - Photoionization (>13.6eV, 921nm) → Recombination
 - N=2→1, 10.2eV, 1216nm
 - Collision

Diffuse Emission from Protocluster Core at Cosmic Noon

- There are so many AGNs around the central part of the protocluster core
- Abundant cool gas & active source (provide ionizing radiation) can boost the Lyα emission from the filamentary structure
- New direct way to test galaxy formation theory!

Umehata+19: SSA22@z=3.1

Suprime-Cam Suprime-Cam A A Suprime-Cam A

Erb+11, HS1700@z=2.3

Detection of an SMG at the tip of the "filament" (preliminary)

- interesting diffuse LAB with filamentary shape, pinpointing the HLQSO – may trace the cold streams?
- To know the origin, we conducted Keck/KCWI observations
 - Achieved S/N is not high due to weather, but we tentatively detect a double-peaked Lyα line
- A sub-mm source detected at the tip by our ALMA observations
 - Spec-z not obtained yet...

Stacking Analyses

- Use cutout Lyα images of LAEs (sky mesh size=30") with continuum sources masked
- Stack Ly α & continuum images with IRAF imcombine
- Sky noise is estimated with "sky cutouts"; behaves well ($\propto \sim N^{-1/2}$)
- PSFs of NB/g-band images are measured with bright point sources
 - Central part: objects with CLASS_STAR> 0.95 and 18 < g < 22
 - Outer part: stars with $13 < g_{SDSS} < 15$ from SDSS DR14 catalog
 - These are connected at r = 20 pixels following a method described in Infante-Sainz et al. (2019)

"average face" of Japanese men

Lyα Cont.

Stacking Analyses

- "Non-LAE" sample is constructed to check total systematics (see Momose+14)
 - Stack randomly selected objects with similar NB mag & FWHM and check if they are extended
- Detect diffuse Ly α emission down to ~10⁻²⁰ erg/s/cm²/arcsec²

750

LAE

non-LAE

1500 radmnu 250

4.75

4.25

3.75 3.25

2.75

LAH Dependence on Various Properties

Fitting exponential functions

- SB radial profiles are fit with the following functions:
 - 2-component exponential: PSF*(C₁×exp(-r/r₁))
 - **1-component exponential**: $PSF^*(C_1 \times exp(-r/r_1) + C_2 \times exp(-r/r_2))$
 - **Power-law**: $PSF^*(C_1 \times r^{-\alpha})$ as suggested by a model in Kakiichi & Dijkstra 2018

Results of Stacking: UV, L_{Lvα}, EW

Fitting exponential functions

- 2-comp exp. functions are needed for Lyα SB profiles, while 1-comp exp. functions are enough for UV in most cases
- Bright (in Lyα/UV) / low-EW LAEs require the UV 2nd component
 - This is the first robust detection at high-redshift
- Power-law sometimes fails to capture the transition from 1st to 2nd component

Results of Fitting

- Lya/UV 1st components correlate with $M_{\scriptscriptstyle UV},\,L_{\scriptscriptstyle Lya},\,EW$
 - Brighter LAEs have larger cores
- Ly α 2nd component behaves stochastically
- Protocluster sample (δ >2.5) stands out

Relation between scalelengths r_{1,UV}, r_{1, Lya}, r_{2, Lya}

- Correlation found only for $r_{1,UV}$ $r_{1,Ly\alpha}$
 - $r_{2,Ly\alpha}$ is difficult to predict
- Commonly used assumption of $r_{1,UV} = r_{1,Lya}$ is not valid (gray line: 1:1 rel.)
 - Caution: small value for $r_{1,\text{UV}}$ may be just due to nondetection in continuum images

Discussion: Origin of the Large LAH in PCs

- Overlapping of galaxies or UV brightness of the PC LAEs cannot fully explain the large LAH
- We further divide the PC sample into near/far from the QSO sample
 - Far sample no longer has a very large LAH
 - Near sample shows an even larger LAH

• Diffuse emission around the PC core may be the cause

 Related to abundant cool gas irradiated by active members in the PC core

Discovery of "UV Halos" and Its Implication to Low-Mass Galaxy Evolution

- Comparison with the TNG100 run of the IllustrisTNG simulation
 - make median stacked SFR surface density profiles of FOF (friends-of-friends) halos at z = 3
- The UV-brightest subsample has a similar shape as the SFR surface density profiles of TNG galaxies with 1 < SFR < 10 and 10 < SFR < 100 subsamples
 - Given the similarity of the profiles, the UV halo of the UV-brightest LAEs would be also due to satellite galaxies
 - On average, they have 1.9 and 2.3 satellites, with median DM halo masses of 3.3 $\times 10^9$ M_{_{\odot}} and 4.4 $\times 10^9$ M_{_{\odot}}
 - the UV halo may be comprised of a few satellite galaxies, not by an intrinsically diffuse stellar halo, unlike local mature galaxies
 - Such satellites have 0.01 < SFR < 0.1 detectable with JWST?

TNG 100<SFR 10<SFR<100

Insights into the Origin of LAHs

- First detection of the UV 2nd component (r < 40 pkpc) offers direct evidence for a contribution from satellite SF
 - Agree with recent simulation results (Byrohl+20, Mitchell+20, Lake+15)
 - Can be tested with JWST by seeing if "**Hα halos**" exist or not
- To determine the origin of LAH at larger radii, deeper obs. & comparison with state-of-the-art simulations are needed
 - Current simulations still cannot treat all relevant physics
 - Fluorescent Lyα emission may contribute significantly at outer regions within protocluster cores at cosmic noon and/or near bright QSOs

Summary

- The HS1549 protocluster corresponds to the intersection of ~100cMpc-scale structure. **"Cold stream"-like structure is discovered near its core**.
- Sensitivity close to 1e-20 erg/s/cm²/arcsec² is necessary for safe argument (at z~3) of LAHs NB stacking with Subaru/HSC is still a powerful tool in the era of sensitive IFUs!
- Lya SB profiles are well fit with 2-component exponential functions with $r_{2,Lya}{\sim}10$ pkpc
- $r_{1,Ly\alpha}$ and $r_{1,UV}$ correlate, but $r_{2,Ly\alpha}$ does not correlate with any photometric property insufficient S/N?
- Very large $r_{2,Ly\alpha}$ in the PC $\mbox{ suggest the importance of "fluorescence" as a LAH origin under some situations$
- We found "UV halos" around bright/low-EW LAEs
 - demonstrates **satellite SF** as important contributor
 - Comprised of a few low-mass satellites?
- To determine the origin of LAH at larger radii, deeper obs. & comparison with state-of-the-art simulations are needed

Take home messages for HSC research

- やりたいことを念頭に観測戦略を立てる
 - ディザリング、一枚あたり露出時間、観測効率、 etc
- データ整約、解析も目的に応じて適切なものを選ぶ
 - アーカイブ画像を使う場合、観測条件や解析過程がやりたいサイ エンスと照らして適切かをチェックする
 - 例:スカイ引きのメッシュサイズが目標天体に対して十分大きいか
- ・ 画像の質は必ず自分の目で確かめる
 - カタログには人工信号が混入している可能性あり
 - データが巨大な近年では機械学習で人工信号を除くなどの例も