

Clustering redshifts in DESC

Chris Morrison University of Washington

Clustering redshifts in DESC

Table 4.6.1: Photometric Redshift key analysis tools					
Analysis Tool/CODE NAME	Purpose	DC1	DC2	DC3	ComCam
Photo-z Simulations PZGALAXYGENERATOR	Provide testbed for exploring sys- tematics & incom- pleteness impact on photo-z's	PZ1 Provide re- alistic estimates of shapes of $p(z)$ from LSST	PZ1 Incorporate spectroscopic in- completeness and template mismatch into simulations	Refine LSST $p(z)$ shape / uncertainty estimates with realistic systemat- ics from imaging simulations	N/A
Photo-z Algorithms PZPDF	CalculatePDFs $(p(z, \alpha))$ fromphotometry	PZ1 Test calibra- tion of $p(z)$'s pro- vided by existing algorithms	PZ3 Test provision of $p(z)$ on DC2 dataset	PZ3 Test provision of $p(z, \alpha)$ on DC3 dataset, methods for combining re- sults from multiple codes	Run resulting photo- z codes on survey data
Training Methods PZPDF	Optimize photomet- ric redshift results from algorithms, given a training set		PZ1 Test methods of training with incomplete spec- troscopy; CX1 Develop methods for mitigating blending	PZ3 Refine use of training informa- tion within photo- <i>z</i> algorithms	
Calibration Methods PZCALIBRATE	Determine actual $p(z)$ for comparison to estimated $p(z)$'s	PZ2 set require- ments on DC2 simulations for cross-correlation calibration tests	PZ2 Test cross- correlation cali- bration algorithms	PZ3 Test end-to- end calibration on DC3 data	Run end-to-end cal- ibration pipeline on survey data
Spectroscopic Train- ing Sets PZSPECZSELECTOR	Obtain spectro- scopic redshifts for galaxies to improve photo-z algorithms	Work with DES and other precursor teams to obtain training samples to pre-LSST depth	PZ1 Set require- ments for spec- troscopic redshift training sets	PZ4 Develop effi- cient spectroscopic redshift target se- lection algorithms	PZ4 Obtain train- ing samples with proposals to new spectrographic in- struments

cite: LSST DESC Science Roadmap Nov. 2, 2016

"Spectroscopic Needs"Newman et al. 2013

Active team: S. Schmidt, C. Morrison, J. Newman, A. Malz, C. Davis, & others.

Near term goals:

How much area do we need for DC2, Photo-z sims? Tradeoffs with realistic (complex) clustering/area/realistic photometry.

How important is lensing to clustering-zs and do we need it in DC2?

Is the galaxy bias as currently simulated good enough to test its effect on clustering-zs especially at small scales?

Test data set:

Buzzard 1.1: Joe DeRose and Risa Wechsler et al. 10,000 deg^2 simulation with lensing and a semi-analytic galaxy model populating halos. \sim 30 gal/arcmin^2 to z=2.0.

Select Dark Energy Spectroscopic Instrument (DESI) like galaxies from sim to use as reference redshfits. (r<19.5, LRG, ELG)

Currently using DES depths/colors and Gaussian "photo-z". In the future we will have LSST like data with a photo-z.

Prelim work/results:

the-wizz (<u>https://github.com/morriscb/the-wizz</u>): Publicly available clustering-z code based off Schmidt13, Menard13, Rahman15. Recent major code overhaul, getting closer to throughput required for future surveys.

Run on ~900 deg^2 of Buzzard1.1 using DESI like objects as references. Currently using Gaussian scattered "photo-zs" as unknown sample.

LRG: z<23.0, log10(stellar_mass) > 11.22 ELG: r<23.4, b300 > 0.102 Densities: 354 LRG/deg^2; 1445 ELG/deg^2

LRG: z<23.0, log10(stellar_mass) > 11.22 ELG: r<23.4, b300 > 0.102

Densities: 354 LRG/deg^2; 1445 ELG/deg^2

LRG clustering-zs: R=100-1000 kpc 1.2 1.0 0.8 φ(z) [Max=1] $Z_{phot} = 0.0 - 0.2$ -0.6 = 0.40.6 $Z_{\text{phot}} = 0.8 - 1.0$ $Z_{phot} = 1.2 - 1.4$ Zphot = 1.6 - 1.8 0.2 0.0 0.75 1.25 0.25 0.50 1.00 1.50 1.75 0.00 2.00 Ζ

LRG clustering-zs: R=1-10 Mpc

Next Steps:

Pick a galaxy bias correction estimate and compare to using the known bias from the simulation.

Finalize input to DC2 in time for the DESC collaboration meeting in July.

Turn on and off lensing to test its effect on the clustering-zs. Test results from D. Matthews PhD thesis.

Run a photo-z using LSST magnitudes. Test outlier detection.

Start working on how to co-calibrate with photo-z in DC2.