

Matt Jarvis (Oxford)

On behalf of LSST-DESC-photo-z

(but mainly Ibrahim Almosallam)

Using Gaussian Processes (not neural nets) for machine learning

• In a **Gaussian process**, every point in some continuous input space is associated with a normally distributed random variable.

Advantages

- Naturally Bayesian
- Do not have to define NN structure, N layers/hidden layers etc etc

GPz - Advances from standard GPs and other ML methods

- Cost sensitive learning (weight the training or test data in any way you want)
- Sparse GP with variable covariance/length (allows flexible modelling of the parameter space of interest without introducing more basis functions)
- Heteroscedastic noise (GP knows where there is not enough data and models the lack of data as part of the training)
- See Almosallam et al. 2016a,b, MNRAS for full details

GPz: Variance estimates

Almosallam, PhD Oxford, 2017

Probability of z|u-band magnitude

Almosallam, PhD Oxford, 2017

GPz Applied to HSC COSMOS

GPz Applied to HSC COSMOS

Using best 70% of data (i.e. sigma(z) < 0.2)

GPz Applied to HSC COSMOS

Using best 50% of data (i.e. sigma(z) < 0.135)

Also applied to the Buzzard simulations as part of LSST data challenge along with other ML codes

TPZ: 100 trees

ANNz: 100 neurons

GPz: 100 basis functions

Uncertainty

GPz: 100 basis functions

Are the posteriors reasonable?

Using GAMA + SDSS + UKIDSS (See Zahra's poster)

Gomes et al. in prep

Why stop at visible colours?

CSL Method	Filters	RMSE	NBIAS	MLL	$FR_{0.15}$	$FR_{0.05}$	Variance	Model Variance	Noise Variance
Normal	ugriz ugrizYJHK ugrizYJHK+size	$0.0478 \\ 0.0438 \\ 0.042$	-0.0027 -0.0024 -0.0024	1.7714 1.8075 1.8792	99.1941 99.4523 99.4366	84.7809 87.7778 89.1471	0.0023 0.0018 0.0018	6.90E-06 6.80E-06 7.20E-06	0.0023 0.00184 0.00180
Normalized	ugriz ugrizYJHK ugrizYJHK+size	0.0476 0.0443 0.0418	0.0001 0.0001 -0.0001	1.7115 1.7893 1.8188	99.2958 99.4366 99.507	84.8279 87.8091 89.6401	0.0015 0.0013 0.0011	6.68E-06 6.99E-06 6.06E-06	0.0015 0.0013 0.0011

Gomes, Jarvis, Almosallam & Roberts in prep See Zahra's poster at the back of the room

GPz: non-Gaussian PDFs

GPz: developments

- Add in more information e.g. X-ray, radio, sizes etc (Zahra's poster)
- Use photometric noise without training with it
- Cost-sensitive learning based on colour distribution of "test" data
- Deal with missing data (not non-detections which we deal with anyway by using fluxes)

GPz: developments

- Add in more information e.g. X-ray, radio, sizes etc (Zahra's poster)
- Use photometric noise without training with it
- Cost-sensitive learning based on colour distribution of "test" data
- Deal with missing data (not non-detections which we deal with anyway by using fluxes)
- Incorporate clustering within the training in fully consistent Bayesian framework
- Multi-modal Gaussian Process (would remove need for repeat training) and provide full PDF
- Regress to template fitting PDFs when GPz assesses it as the better option

GPz vs Random Forest

Number of missing filters

GPz: Summary

- Fully Bayesian ML framework
- Better point estimates and variance determination than ANNz2 (and possibly other NN-based codes – but need to check)
- Factor of ~100 faster than ANNz2 with PDFs
- Python and MATLAB versions available at

https://github.com/OxfordML/GPz

• We're happy to run with HSC, KIDs & DES data (if you can provide the training and test data sets)

Pseudo-points

Figure 2.2: The effect of changing the number of pseudo-points (m), from (a) to (f) in multiples of 2, on FITC using an RBF kernel. The plots show the mean function (red), draws from the function distribution (Equation (2.41)), the 95% confidence range (grey), i.e. plus or minus two standard deviations from the mean, and the locations of the pseudo-points (black). The log marginal likelihood values are shown above each plot.

How to deal with noise

0.3 ↓ 0.2 ↓ 0.1 ↓

-0.1 \ -0.2 \ -0.3 \ -0.4 \ 15

Figure 4.3: The results of training FITC, GPVL, GPVD and GPVC with different numbers of basis functions (m) on the same data collected using Equation (4.30). The ellipses represent the learned covariances of the RBFs, where the degree of transparency is proportional to the relevance (Equation (4.32)). The log marginal likelihoods are shown above each plot.