Overview and Recent results from HSC

Masahiro Takada (Kavli IPMU) on behalf of HSC collaboration

Photo-z WS @ Sendai, May 2017

Imaging and spectroscopic surveys with Subaru

- Build wide-field camera (Hyper Suprime-Cam) and wide-field multiobject spectrograph (Prime Focus Spectrograph) for the Subaru Telescope (8.2m)
- HSC imaging survey since 2014
- PFS survey will start around 2020
- Keep the Subaru Telescope a world-leading telescope in the TMT era
- Precise images of 1B galaxies
- Measure distances of ~4M galaxies

HSC SSP survey since 2014

ACADEMIA S

PI: S. Miyazaki (NAOJ)

International collaboration (Japan, Taiwan, Princeton U.) Subaru 300 nights already granted

HSC SSP Survey Fields

- Three-layer survey
- Wide:1400 sq. deg, grizy (i~26)
- Deep: 26 sq. deg, grizy (i~27)+3NBs
- UltraDeep: 3.5 sq. deg., grizy (i~28)+3NBs

First Data Release (DR1) of HSC SSP 28 Feb, 2017

~60 Subaru nights, ~100 sq. deg., ~10⁸ objects ≃10yrs SDSS A series of science papers will come out this April

News v About v Projects Access/Visiting v Astronomical Information Gallery

Q Search Japanese

First Public Data Release by the Hyper Suprime-Cam Subaru Strategic Program

February 28, 2017 | Topics

DR1 paper: Aihara et al. (M. Tanaka): arXiv:1702.08449 Survey overview paper: arXiv:1704.05858 Camera paper (S. Miyazaki): soon come

Publ. Astron. Soc. Japan (2014) 00(0), 1 doi: 10.1093/pasj/xxx

> Masayuki Tanaka (NAOJ)

First Data Release of the Hyper Suprime-Cam Subaru Strategic Program

Hiroaki Aihara¹, Robert Armstrong², Steven Bickerton³, James Bosch², Jean Coupon⁴, Hisanori Furusawa⁵, Yusuke Hayashi⁵, Hiroyuki Ikeda⁵, Yukiko Kamata⁵, Hiroshi Karoji^{6,2}, Satoshi Kawanomoto⁵, Michitaro Koike⁵, Yutaka Komiyama^{5,7}, Robert H. Lupton², Sogo Mineo⁵, Hironao Miyatake^{8,9}, Satoshi Miyazaki^{5,7}, Tomoki Morokuma^{10,9}, Yoshiyuki Obuchi⁵, Yukie Oishi⁵, Yuki Okura^{11,12}, Paul A. Price², Tadafumi Takata^{5,7}, Manobu M. Tanaka¹³, Masayuki Tanaka^{5,*}, Yoko Tanaka¹⁴, Tomohisa Uchida¹³, Fumihiro Uraguchi⁵, Yousuke Utsumi¹⁵, Shiang-Yu Wang¹⁶, Yoshihiko Yamada⁵, Hitomi Yamanoi⁵, Naoki Yasuda⁹, Nobuo Arimoto^{14,7}, Masashi Chiba¹⁷, Francois Finet¹⁴, Hiroki Fujimori¹⁸, Seiji Fujimoto¹⁹, Junko Furusawa⁵, Tomotsugu Goto²⁰, Andy Goulding², James E. Gunn², Yuichi Harikane^{19,21}, Takashi Hattori¹⁴, Masao Hayashi⁵, Krzysztof G. Hełminiak²². Byo Higuchi¹⁹, Chiaki Hikage⁹, Paul T.P. Ho^{16,23}, Bau-Ching

Release	Date	Layer	N	Area	Files	Ν	Version
		-	filter	(deg^2)	(TBytes)	object	hscPipe
Public Data Release 1	2017-02-28	UltraDeep	7	4	8.6	3,225,285	4.0.1
		Deep	7	26	16.6	15,959,257	4.0.1
		Wide	5	108 (100)	57.1	52,658,163	4.0.1
S14A0	2014-09-04	UltraDeep	5	2	2.2	880,792	2.12.4a
		Wide	2	24	2.6	10,548,142	2.12.4a
S14A0b	2015-02-10	UltraDeep	5	4	6.4	2,183,707	2.12.4d
		Wide	5	94 (23)	18.6	63,954,672	3.4.1
S15A	2015-09-01	UltraDeep	6	4	7.2	2,973,579	3.8.5
		Deep	6	24	17.7	14,747,568	3.8.5
		Wide	5	203 (82)	40.7	64,073,662	3.8.5
S15B	2016-01-29	UltraDeep	7	4	8.6	3,225,285	4.0.1
		Deep	7	26	16.6	15,959,257	4.0.1
		Wide	5	413 (111)	145.2	157,423,778	4.0.1
S16A	2016-08-04	UltraDeep	7	4	7.5	3,208,918	4.0.2
		Deep	7	28	8.0	16,269,129	4.0.2
		Wide	5	456 (178)	245.0	183,391,488	4.0.2

Table 3. Summary of this public release and previous internal data releases. The area is estimated by using HEALPix index system ($N_{side} = 2^{11}$) and mosaicking information from the pipeline processing. The 5th column gives the survey area in square degrees. The full-color full-depth area in the Wide survey is shown in the parenthesis. Only the full-color full-depth Wide area is included in this release, but the area in the brackets in the top row is smaller than the total area. This is primarily because the release area is determined on a patch by patch basis, but a fraction of the area in the patches on the field borders actually do not reach the full depth. The 7th column shows the number of objects; since the deblender became functional in the S15A release, the numbers for the subsequent releases are for primary objects (detect_is_primary=True; see Section 4.3).

http://hsc.mtk.nao.ac.jp https://hsc-release.mtk.nao.ac.jp

Ś	Safari フ	ァイル 編集	表示 履歴 ブッ	クマーク ウインド	ゥ ヘルプ	1 🐺 (0 🐼 🌢 N	🙆 奈 🗔 100%	🔲 あ 火 21:	00 Masahiro Takad	a Q 🌏	Ξ
••	• <>			0		hscdata.mtk.nao.ac.jp		C			0	đ
:::: n	nt Vox Charta	a アップル A	stronomy 🗸 Search 🗸	IPMU ✓ Servers ✓	Physics/Cosmology ~ SuMIRe	✓ News ✓ conference ✓	Grant ➤ Shopping/Tr	ravel V Computing V	CMB 🗸 wiki 🗸	Works ✓ Earthquake/	Power Plants V	>>
<u>help</u>	op catalogs	新子術領域 「な・・ Color	CAS SQL qu	arry fits in	nfo settings bookmark	 Choose Choose 	it go by coordi	nate mark	2012 ASJ Yo	SSP CAS -ns	Mac expo	+
	-		the section			×						+
		1				1. 1. 1. 1.	1. 1. 1. 1	1.8		ويتعرب		
			-		1 N 1 1					· · · ·		
. 1					A	12.7	· · · · · · · · · · · · · · · · · · ·					
			1		· · · ·		1000			S. 2.		
					an ter at a t							
	1					<						•
	• • • • •							1 . · ·	1.1			
-						· · · ·					1.1.1	
	· · · ·	194. – L			Are the				Sec. 2.	1.1		
	•			2	1. 1. 1.		1 N					
•										1		
	17.0	÷ .			1 1 1 a 1 1 1 1				110		are: 1	
					< . · · · · · · · · · · · · · · · · · ·	14.	12 3	19.11	•	· · · · ·		1
							1 A.					
						•	1	1.48	1			·
			1									
2. 2												
					• • • •					baut/a	a + + c	_
			1.		1. S.	A goo	ja star		ama	.DOUL/C)
				and and		know	Suha	ru (HS	C) d	ata?		
				1	Sec. 1	KI IO VV	Juba					
min	i window	background	🔽 tract 🗖 grid	1 10.00.18 97 +02	12.44 92 s162 udeen/981					1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Observation & Tiling Strategy (HSC-Wide)

Aihara et al.: arXiv: 1704.05858

- Carry out *i*-band observation (WL) if seeing (weather) looks good (we have on-site quick QA system; seeing and transparency)
- A large-dithering offset (~0.5 deg. \approx 1/3 of 1.5 degrees)
- Different exposures (visits) for the same field separated by more than 0.5 hours (to have different atmosphere)
- So far, focus on the interesting fields (i.e. with existing X-ray or spec-z data)
- Acquire full-depth, full-color first, and then build up the area

A big milestone! 39 pages, 23 figures

appear soon on arXiv

1

Mandelbaum, Miyatake, Hamana, Oguri, Simet, Armstrong, Bosch,

Publ. Astron. Soc. Japan (2014) 00(0), 1–39 doi: 10.1093/pasj/xxx000

Note: we employed conservative cuts on galaxy selection for the shape catalog

The first-year shear catalog of the Subaru Hyper Suprime-Cam SSP Survey

Rachel Mandelbaum¹, Hironao Miyatake^{2,3}, Takashi Hamana⁴, Masamune Oguri^{5,6,3}, Melanie Simet^{7,2}, Robert Armstrong⁸, James Bosch⁸, Ryoma Murata^{3,6}, François Lanusse¹, Alexie Leauthaud⁹, Jean Coupon¹⁰, Surhud More³, Masahiro Takada³, Satoshi Miyazaki⁴, Joshua S. Speagle¹¹, Masato Shirasaki⁴, Cristóbal Sifón⁸, Song Huang^{3,9}, Atsushi J. Nishizawa¹², Elinor Medezinski⁸, Yuki Okura^{13,14}, Nobuhiro Okabe^{15,16}, Nicole Czakon¹⁷, Ryuichi Takahashi¹⁸, Will Coulton¹⁹, Chiaki Hikage³, Yutaka Komiyama^{4,20}, Robert H. Lupton⁸, Michael A. Strauss⁸, Masayuki Tanaka⁴ and Yousuke Utsumi¹⁶

¹McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA ²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

Galaxy Clusters (HSC camira clusters): arXiv:1701.00818

SDSS (2.5m, r<21, ~1")

Msamune Oguri Subaru HSC (8.2m, r<26, 0.6'')

the same rich cluster region at z=0.41

Newly discovered, high-redshift cluster (unique for finding clusters at z>0.5)

richest at z>0.8 RA=179.2265 Dec=-0.6291 z=0.829 N=88.1

HSC superb image quality allows an accurate weak lens measurement

3D mass and galaxy maps

Oguri+ in prep.: appear on arXiv soon

A nice correlation between mass and galaxy maps (these maps used photo-z's)

Greco et al. "Sumo Puff" (arXiv: 1704.06681)

Subaru Prime Focus Spectrograph (PFS)

PFS Collaboration

H. Murayama (PI)

N.Tamura (PM)

Kavli IPMU is leading this international collaboration

PFS Science White Paper

Takada, Ellis et al. 2014

Publ. Astron. Soc. Jpn (2014) 66 (1), R1 (1–51) doi: 10.1093/pasj/pst019 Advance Access Publication Date: 2014 February 17 Review

R1-1

Review

Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph

Masahiro TAKADA,^{1,*} Richard S. ELLIS,² Masashi CHIBA,³ Jenny E. GREENE,⁴ Hiroaki AIHARA,^{1,5} Nobuo ARIMOTO,⁶ Kevin BUNDY,¹ Judith COHEN,² Olivier Doré,^{2,7} Genevieve GRAVES,⁴ James E. GUNN,⁴ Timothy HECKMAN,⁸ Christopher M. HIRATA,² Paul Ho,⁹ Jean-Paul KNEIB,¹⁰ Olivier LE FèVRE,¹⁰ Lihwai LIN,⁹ Surhud MORE,¹ Hitoshi MURAYAMA,^{1,11} Tohru NAGAO,¹² Masami OUCHI,¹³ Michael SEIFFERT,^{2,7} John D. SILVERMAN,¹ Laerte SODRÉ, JR.,¹⁴ David N. SPERGEL,^{1,4} Michael A. STRAUSS,⁴ Hajime SUGAI,¹ Yasushi SUTO,⁵ Hideki TAKAMI,⁶ and Rosemary WYSE⁸

¹Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583
²California Institute of Technology, 200 East California Blvd, Pasadena, CA 91125, USA
³Astronomical Institute, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578

Summary

- The wide-field capability of Subaru is so unique, and very powerful for survey-oriented astronomy/cosmology
- Hyper Suprime-Cam (HSC) = Wide-field imager
 - HSC SSP survey: 2014 2019(20)
 - First public data release (28 Feb, 2016)
 - Excellent datasets = deep, sharp
 - The WL shape catalog: meets the 1st year cosmology analysis requirements (will be made public)
 - Photo-z is so important for all science cases
- Prime Focus Spectrograph (PFS) = Wide-field, multi-object spectrograph