The Euclid Mission

Konrad Kuijken on behalf of the Euclid Consortium

www.euclid-ec.org

The Euclid Mission

Photo-z meeting Sendai, 17/5/2017

Euclid Top Level Science Requirements

Sector	Eu	clid Targets
Dark Energy	•	Measure the cosmic expansion history to better than 10% in redshift bins $0.7 < z < 2$.
	•	Look for deviations from $w = -1$, indicating a dynamical dark energy.
	•	Euclid <i>alone</i> to give $FoM_{DE} \ge 400$ (1-sigma errors on $w_{p} \& w_{a}$ of 0.02 and 0.1 respectively)
Test Gravity	•	Measure the growth index, γ , with a precision better than 0.02
	•	Measure the growth rate to better than 0.05 in redshift bins between 0.5< $z < 2$.
	•	Separately constrain the two relativistic potentials ψ and ϕ
	•	Test the cosmological principle (consistency between H(z) and D(z)).
	•	Detect dark matter halos on a mass scale between 10 ⁸ and >10 ¹⁵ M _{Sun}
	•	Measure the dark matter mass profiles on cluster and galactic scales
Dark Matter	•	Measure the sum of neutrino masses, the number of neutrino species and the neutrino hierarchy with an accuracy of a few hundredths of an eV
Initial Conditions	•	Measure the matter power spectrum on a large range of scales in order to extract values for the parameters σ_8 and <i>n</i> to a 1-sigma accuracy of 0.01.
	•	For extended models, improve constraints on <i>n</i> and α wrt to Planck alone by a factor 2.
	•	Measure a non-Gaussianity parameter : f_{NL} for local-type models with an error < +/-2.
	1	• DE equation of state: $P/\rho = w$, and $w(a) = w_p + w_a(a_p - a)$

- Growth rate of structure formation: $f \sim \Omega^{\gamma}$;
- FoM=1/ $(\Delta w_a x \Delta w_p) > 400 \rightarrow \sim 1\%$ precision on w's.

Euclid: exploring the DM-dominated / DE-dominated transition period

The Euclid Mission Photo-z meeting Sendai, 17/5/2017

Euclid Survey Machine:15,000 deg² + 40 deg²

Euclid Wide+Deep Surveys

• Euclid Wide:

- 15000 deg² outside the galactic and ecliptic planes
- 12 billion sources (3- σ)
- 1.5 billion galaxies (30 gal/arcmin²) with
 - Very accurate morphometric information (WL)
 - Visible photometry: (u), g, r, i, z, (R+I+Z) AB=24.5, 10.0 σ +
 - NIR photom: Y, J, H AB = $24.0, 5.0\sigma$
 - Photo-z with 0.05(1+z) accuracy
- 35 million spectroscopic redshifts of emission line galaxies with
 - R: 260
 - 0.001 z accuracy
 - 21 mag
 - H α galaxies within 0.7 < z < 1.85
 - Flux line: 2 . 10⁻¹⁶ erg.cm⁻².s⁻¹; 3.5σ

- Euclid Deep:
 - 1x10 deg² North Ecliptic pole (EDF-N) + 1x20 deg² South Ecliptic pole (EDF-S1 + 1x10 deg² at CDFS (EDF-S2)
 - 10 million sources (3-σ)
 - 1.5 million galaxies with
 - Very accurate morphometric information (WL)
 - Visible photometry: (u), g, r, i, z, (R+I+Z) AB=26.5, 10.0 σ +
 - NIR photom: Y, J, H AB = $26.0, 5.0\sigma$
 - Photo-z with 0.05(1+z) accuracy
 - 150 000 spectroscopic redshifts of emission line galaxies with
 - R: 260
 - 0.001 z accuracy
 - 23 mag
 - H α galaxies within 0.7 < z < 1.85
 - Flux line: 5 . 10^{-17} erg.cm⁻².s⁻¹; 3.5 σ

ESA Euclid mission

- Total mass satellite :
- 2 200 kg
- Dimensions:
- 4,5 m x 3 m
- Launch: end 2020 by a Soyuz rocket from the Kourou space port
- Euclid placed in L2
- Survey: 6 years,

PLM, scientific instruments

From Thales Alenia Italy, Airbus DS, ESA Project office and Euclid Consortium

Courtesy: S. Pottinger, M. Cropper and the VIS team

VIS VIS CDR on going Table 1: VIS and weak lensing channel characteristics

Spectral Band	550 – 900 nm
System Point Spread Function size	\leq 0.18 arcsec full width half maximum at 800 nm
System PSF ellipticity	≤15% using a quadrupole definition
Field of View	>0.5 deg ²
CCD pixel sampling	0.1 arcsec
Detector cosmetics including cosmic rays	≤3% of bad pixels per exposure
Linearity post calibration	≤0.01%
Distortion post calibration	≤0.005% on a scale of 4 arcmin
Sensitivity	$m_{\text{AB}}{\geq}24.5$ at $10\sigma\text{in}3$ exposures for galaxy size 0.3 arcsec
Straylight	≤20% of the Zodiacal light background at Ecliptic Poles
Survey area	15000 deg ² over a nominal mission with 85% efficiency
Mission duration	6 years including commissioning
Shear systematic bias allocation	additive $\sigma_{\!sys}\!\leq 2 \; x \; 10^{-4} \; ; \; multiplicative \leq 2 \; x \; 10^{-3}$

CIUPPEI EL AI ZUIU.SFIL

VIS: Simulation of M51

From J. Brinchmann

2.4m SDSS-like @ z=0.1

Euclid @ z=0.1

Euclid @ z=0.7

Euclid will get the resolution of SDSS but at z=1 instead of z=0.05.

Euclid will be 3 magnitudes deeper \rightarrow Euclid Legacy = Super-Sloan Survey

The Euclid Mission

Photo-z meeting Sendai, 17/5/2017

NISP

Courtesy: T. Maciaszek and the NISP team

NISP CDR successful in Nov 2016

- FoV: 0.55 deg²
- Mass : 159 kg
- Telemetry: < 290 Gbt/day
- Size: 1m x 0.5 m x 0.5 m
- 16 2kx2K H2GR detectors
- 0.3 arcsec pixel on sky
- Limiting mag, wide survey AB : 24 (5 σ)
- 3 Filters:
- •Y (950-1192nm)
- •, J (1192, 1544nm)
- •, H (1544, 2000nm)
- 4 grisms:
- -1B (920 1300) , 1 orientation 0°
- •3R (1250 1850), 3 orientations 0°, 90°, 180°

Maciaszek et al 2016:SPIE

NISP-spectroscopy for Euclid

From P. Franzetti, B. Garilli, A. Ealet, N. Fourmanoit & J. zoubian

• $\sigma_z = 0.001(1+z)$

• $\sigma_z = 0.0$

0.90

NIR detectors and CCD's

- NIR HgCdTe detectors (Teledyne), 2040X2040 pixels, 18x18 μm, 2.3 μm cut-off, FW=130,000 e-:
- QE ≥ 90% 1 µm to 2.2 µm
- Spectroscopic noise \leq 7 e- over 560 s
- Photometric noise \leq 5 e- over 60 s
- Dark current ≤ 0.005 e-/s/px
- Linearity ≤ 0.7% between 6 ke- and 60 ke-

- CCD (e2v), 4096 x 4132 pixels, 12x12 μm
 FWC=175,000e-
- 4 read-out nodes (in corners)
- SiC package extremely tight flatness
- QE ≥ 70% 500nm to 850nm (95% at 650nm)
- PRNU much better than 2% at all spatial scales
- Noise better than required 3.6 e- at 70 kpix/s
 Ine Euclid Mission

Photo-z mealing Sendai, 17/5/

Euclid Survey

- |b|>30°
- Minimise SAA variations;
- Minimise zodiacal light
 → high ecliptic latitude;
- Low galactic extinction;
- Specific pointed calibration;
- Wide survey: one visit/ field
- Deep survey: many visits

Wide survey area (colour = epoch of observation). Empty regions: ecliptic equator and galaxy plane.

Euclid Wide and Deep Surveys

The Euclid Mission

Euclid complementary data

- 45 nights at Keck telescope: spectroscopy on Euclid Wide fields north
- 25 nights at VLT VMOS/KMOS: spectroscopy on Euclid Wide fields south
- 2 nights pilot program at GTC: preparation of a spectroscopic large program
- 5300 hrs of Spitzer satellite, period 13, priority 1 on 2 Euclid Deep field (20 deg2)
- DES+KiDS survey data
- 271 nights at CFHT *u-, r-* band data on Euclid Wide North
- 110 nights at JST/T250 *g* band data on Euclid Wide North
- Discussions on going with other telescopes

Ground Based Observations for Euclid

	No	rth	South		
	Imaging	Spectroscopy	Imaging	Spectroscopy	
Wide survey	Wide North Imaging LSST+CFHT+Suba ru+T250?	Wide North Spectroscopy	Wide South Imaging DES+LSST	Wide South Spectroscopy	
vvide Survey	YJH ugriz dec<30° ugriz dec>30°	Keck 15+30	YJH ugriz dec<0°	ESO+GTC?	
Deen survey	Deep North Imaging LSST+Subaru	Deep North Spectroscopy	Deep South Imaging LSST	Deep South Spectroscopy	
	YJH ugriz	Subaru+ GTC?	YJH ugriz	ESO+ GTC?	

GTC: ground based spectroscopic survey beyond the pilot program

Ground Segment:

Design Review in Nov 2017

Complex organisation:

- 10 Organisation Units
- 9 Science Data Centers

Data: huge volumes, heterogeneous data sets

- VIS+NIR imagery, morphometry, photometry, spectroscopy, astrometry, transients
- data ground + space
- ~100 Pbytes
- 1⁺ million images
- > 10¹⁰ sources (>3-σ)

Euclid is also: Flagship Euclid Simulation

- 2 Trillion particles N body simulation down to z=0
- 100 redshift slices
- 10 different HOD and halo catalogues up to z=2.3
- Consistent mocks for WL and GC data
- SED: 23 bands from u to IRAC
- 213 Bruzual&Charlot models with different ages and star formation history
- Includes dust absorption
- Normalised to fit H-band photometry
- Galaxy sizes and morphologies
- Partly released, release June 2017

Exploration of DE models with Euclid (redshifts only)

Euclid forecast: Primary Program

Ref: Euclid RB arXiv: 1110.3193	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy		,
Parameter	γ	m _v /eV	f _{NL}	w _p w _a		FoM = $1/(\Delta w_0 \times \Delta w_a)$
Euclid primary (WL+GC)	0.010	0.027	5.5	0.015	0.150	430
EuclidAll (clusters,ISW)	0.009	0.020	2.0	0.013	0.048	1540
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	6000 →
Current (2009)	0.200	0.580	100	0.100	1.500	~10
Improvement Factor	30	30	50	>10	>40	>400

DE equation of state: $P/\rho = w$, and $w(a) = w_p + w_a(a_p-a)$

Laureijs et al 2011

From Euclid data alone, get FoM=1/($\Delta w_a \times \Delta w_p$) > 400 \rightarrow ~1% precision on w's.

Growth rate of structure formation: $f \sim \Omega^{\gamma}$;

Notice neutrino constraints -> minimal mass possible $\sim 0.05 \text{ eV}$

Euclid and the next generation wide field VIS/NIR surveys

	SLACS (~2010 - HST)								
	H O sorl-ium			-		100		Contraction of the	
1		\odot	100		1			1.	
SDSS J1420+6019	SDSS J2321-0939	SDSS J1106+5228	SDSS J1029+0420	SDSS J1143-0144	SDSS J0955+0101	SDSS J0841+3824	SDSS J0044+0113	SDSS J1432+6317	SDSS J1451-0239
	ø	-		0	-	۲	0	1	10
SDSS J0959+0410	SDSS J1032+5322	SDSS J1443+0304	SDSS J1218+0830	SDSS J2238-0754	SDSS J1538+5817	SDSS J1134+6027	SDSS J2303+1422	SDSS J1103+5322	SDSS J1531-0105
1	0	0		وفي.	•*	0	***	6	
SDSS J0912+0029	SDSS J1204+0358	SDSS J1153+4612	SDSS J2341+0000	SDSS J1403+0006	SDSS J0936+0913	SDSS J1023+4230	SDSS J0037-0942	SDSS J1402+6321	SDSS J0728+3835
٢	C,		٢	Se .	0	٢		Ó	
SDSS J1627-0053	SDSS J1205+4910	SDSS J1142+1001	SDSS J0946+1006	SDSS J1251-0208	SDSS J0029-0055	SDSS J1636+4707	SDSS J2300+0022	SDSS J1250+0523	SDSS J0959+4416
1				1			6		
SDSS J0956+5100	SDSS J0822+2652	SDSS J1621+3931	SDSS J1630+4520	SDSS J1112+0826	SDSS J0252+0039	SDSS J1020+1122	SDSS J1430+4105	SDSS J1436-0000	SDSS J0109+1500
SDSS J1416+5136	5055 J1100+5329	SUSS J0737+3216	SDSS J0216-0813	SDSS 00935-0003	SDSS J0330-0020	SUSS J1525+3327	SOSS J0903+4116	SDSS J0008-0004	SUSS J0157-0056
SLACS: The Sloan Lens ACS Survey www.SLACS						CS.org			

A. Bolton (U. Hawai'i IfA), L. Koopmans (Kapteyn), T. Treu (UCSB), R. Gavazzi (IAP Paris), L. Moustakas (JPL/Caltech), S. Burles (MIT)

Image credit: A. Bolton, for the SLACS team and NASA/ESA

Clusters of galaxies with Euclid

- Probe of peaks in density distribution
- Nb density of high mass, high redshift clusters very sensitive to
 - · primordial non-Gaussianity and
 - deviations from standard DE models
- Euclid data will get for free:
 - Λ -CDM: all clusters with M>2 .10¹⁴ Msol detected at 3- σ up to z=2
 - \rightarrow 60,000 clusters with 0.2<z<2 ,
 - → 1.8 10⁴ clusters at z > 1.
 - ~ 5000 giant gravitational arcs
 - → accurate masses for the whole sample of clusters
 - → dark matter density profiles on scales >100 kpc
- → Synergy with Planck and eROSITA

Max BCG

Prospect for detecting high-z Ly-a emitters

SSO: opportunities with Euclid

- Detection of 1.9-3.5 ×10⁵ of known SSOs in Euclid Wide
- Similar number of new SSOs expected
- Stability and high resolution enables detection of:
 - multiple systems (~15% of total)
 - object activity
 - light curves
 - \rightarrow data to be combined with Gaia + LSST
- Unambiguous classification for most Euclid detections
- Propose and develop dedicated analysis procedures and algorithms \rightarrow coordination with EC SGS, possible integration in SDCs;
- Setting up ground based follow up (and define requirements) and collaborations;
- Technical + operational support from ESA;
- Involvement of other ESA missions (Gaia).

Mission Timeline and Data Releases

Summary

- Euclid cosmology core program:
 - Use 5 cosmological probes, with at least 2 independent, and 3 power spectra
 - Perfect complementarity with Planck: probes and data, cosmic periods
 - Explore the dark universe: DE, DM (neutrinos), MG, inflation, biasing, baryons
 - Explore the transition DM-to-DE-dominated universe period
 - Get the percent precision on *w* and the growth factor γ
 - Synergy with New Gen wide field surveys: LSST, WFIRST, e-ROSITA, SKA
 - 140,000 strong lenses \rightarrow DM haloes of galaxies, galaxies, groups, clusters
- Euclid =12 billion sources, 35 million redshifts, 1.5 billion shapes/photo-z of galaxies;
 - A mine of images and spectra for the community for years;
 - A reservoir of targets for JWST, E-ELT, TMT, ALMA, VLT
 - A set of astronomical catalogues useful until 2040+
- Big challenges: data processing (100-300 Petabytes), cosmological simulations
- Launch 2020, start 2021: 2500 deg² public in 2023, 7500 deg² in 2025, final 2027

